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Abstract

The objective of the paper is to assess the effectiveness of the lattice Boltzmann equation (LBE) as a computational

tool for performing direct numerical simulations (DNS) and large-eddy simulations (LES) of turbulent flows. Decaying

homogeneous isotropic turbulence (HIT) in inertial and rotating frames is considered for this investigation. We perform

three categories of simulations. The first category involves LBE-DNS of HIT. In the inertial frame of reference, the

decay exponents of the kinetic energy k, the dissipation rate e and the low wave-number scaling of the energy spectrum

are studied. The LBE results agree well with established classical results. In the case of turbulence subject to frame rota-

tion, the LBE simulations confirm that the energy decay rate decreases with Rossby number as the energy cascade is

inhibited by rotation. Second, we carry out LBE-LES for decaying HIT in inertial frame. We compute kinetic energy

decay, energy spectrum and flow structures. By comparing LBE-LES and LBE-DNS results, we observe that LBE-LES

accurately captures prominent large scale flow behavior. We find that the Smagorinsky constant CS in LBE-LES should

be smaller than the typical value used in traditional Navier–Stokes (NS) LES approaches. Finally, we compare the

LBE-LES and NS-LES (of comparable order of numerical accuracy) results for HIT and observe that the LBE-LES

simulations appear to preserve instantaneous flow fields somewhat more accurately. Our results clearly indicate that

the LBE method can accurately capture important features of decaying HIT and is potentially a reliable computational

tool for turbulence simulations.
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1. Introduction

An emerging alternative to Navier–Stokes (NS) based methods for flow computations is the lattice

Boltzmann method (LBM) [1–3]. The LBM is based on the Boltzmann equation and, in principle, is valid

over a wider range of flow physics than the NS equations. In LBM, microscopic fluid physics is simplified to
retain only the key elements (the local conservation laws and related symmetries) needed to guarantee accu-

rate macroscopic behavior. The resulting formulation can yield computational advantages over traditional

continuum methods [4–7]. Consequently, the LBM has found applications in many areas of flow physics,

such as free-surface flows [8], the Rayleigh–Taylor instability between two fluids [9], multicomponent flows

through porous media [10], viscoelastic flows [11,12], particulate and colloidal suspensions in fluids [13–15],

and other complex systems (cf. [5–7] and refs. therein).

While LBM is reasonably well established as an efficient and effective computational tool for many flow

problems, its utility in turbulence has not yet been completely investigated. In an effort to assess the ability
of LBM in turbulence, we first perform direct numerical simulation (DNS) and large-eddy simulation (LES)

of decaying homogeneous isotropic turbulence (HIT) in both inertial and rotating frames of reference.

Decaying HIT is an important benchmark problem in DNS and LES of turbulence. In fact, the first at-

tempt at DNS with incompressible NS equation involved this problem [16]. Since then several numerical

investigations of decaying HIT have been carried out, including some recent NS studies on decay exponents

and low wave-number spectra [17–20]. Some preliminary studies of three-dimensional (3D) decaying HIT

using LBE have also been performed [21–23], but these investigations stop well short of quantitative com-

parisons with the well established classical results.
The objective of the present paper is to conduct a comprehensive numerical study of decaying HIT with

LBE-DNS and LBE-LES to establish the suitability of LBM for turbulence applications. The remainder of

this paper is organized as follows. Section 2 briefly reviews relevant background on decaying homogeneous

isotropic turbulence. Section 3 gives a concise introduction of the lattice Boltzmann equation for DNS and

LES of turbulence. Section 4 presents the numerical results and comparisons with NS-DNS and experi-

ments. Finally, we conclude in Section 5 with a summary of our results and discussion.

As a prelude, we summarize here the simulation results and inferences. In this study, we perform the fol-

lowing three types of simulations. (a) LBE-DNS of decaying HIT in inertial and rotating frames of refer-
ence: the decay exponents of the kinetic energy k and dissipation rate e are computed and compared with

corresponding NS-DNS results. The low wave-number scaling of the energy spectrum is studied. The effect

of rotation on the energy decay is examined. In all cases, the LBM results agree well with established data

and flow behavior. (b) LBE-LES of decaying HIT in inertial frame of reference: we compute kinetic energy

decay, energy spectrum and flow structures using LBE-LES. By comparing LBE-LES results with LBE-

DNS, we observe that LBE-LES accurately captures large-scale flow behavior. We find that the Smagorin-

sky constant CS in LBE-LES should be smaller than its traditional value used in NS-LES approaches. (c)

Comparison LBE-LES vs. NS-LES: we carry out a comparative study of LBE-LES and NS-LES in HIT.
Our inference is that LBE-LES preserves flow structures somewhat more accurately than NS-LES.
2. Decaying homogeneous isotropic turbulence

Decaying isotropic turbulence has been the subject of many experimental and numerical studies. Due to

the vast database available, this flow is an excellent test bed for examining new numerical schemes and clo-

sure models.
The energy spectrum Êðj; tÞ in decaying HIT evolves as
otÊðj; tÞ ¼ �T̂ ðj; tÞ � 2mj2Êðj; tÞ; ð1Þ
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where j is the wave-number and m is the kinematic viscosity, and T̂ ðj; tÞ represents the nonlinear

energy transfer between modes (cf. Eq. (6.162) in [24]). The kinetic energy k and dissipation rate

e are given by
k ¼
Z

ÊðjÞdj; and e ¼ 2m
Z

j2ÊðjÞdj.
It has been long observed that, after a short initial transient period of time, the kinetic energy k and dis-

sipation rate e exhibit power-law decay [24]
kðtÞ
k0

� t
t0

� ��n

;
eðtÞ
e0

� t
t0

� ��ðnþ1Þ

; ð2Þ
where k0 and e0 are the values of k and e at the reference time t0 = n k0/e0 (cf. Eq. (5.277), p. 160 in [24]).

Isotropic turbulence is typically characterized by the Taylor-microscale Reynolds number
Rek ¼
urmsk
m

¼ 2k

ffiffiffiffiffiffiffi
5

3me

r
; ð3Þ
where k (¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15mu2rms=e

p
) is the transverse Taylor-microscale length and urms (¼

ffiffiffiffiffiffiffiffiffiffi
2k=3

p
) is the root mean

square (rms) of the velocity field u.
Eq. (1) admits a continuous class of invariant solutions in the limit of Re ! 1 [25]. At large Re, Êðj; tÞ

at the low wave-number behaves as limj!0ÊðjÞ � jr, where r is a time-independent constant (e.g. [26]). For

inviscid fluids, if Loitsyansky�s integral [27] is an invariant, then r = 4 and n = 10/7 [28]; if Birkhoff�s inte-
gral [29] is an invariant, then r = 2 and n = 6/5 [30]. It has been recently shown that time-invariant integral

length scale l corresponds to r = 1 and n = 2 and time-invariant Reynolds number corresponds to r = 1

and n = 1 [31]. Furthermore, the conservation of energy, angular momentum, and helicity lead to r = 2,

7, and 1, in the limit of Re ! 1, respectively. Energy conservation in Eq. (1) leads to r = 2, in accordance
with Birkhoff�s invariant [29]. Despite the apparent simplicity of the decaying HIT problem, the relevant

flow invariant, asymptotic decay exponent and the low wave-number scaling are strong functions of the

initial spectrum and Reynolds number. Consequently, various asymptotic behavior have been reported

[17,18,25,32].

To investigate the suitability of LBE method for DNS of turbulence, we perform detailed compar-

isons with established data on the following important items: (i) energy decay exponent n, (ii) low

wave-number scaling of the spectra, (iii) flow structure, and (iv) effect of rotation on kinetic energy

decay.
3. LBE formulation for DNS and LES of turbulence

3.1. Lattice Boltzmann equation for DNS

The LBE with single-relaxation-time approximation due to Bhatnagar, Gross and Krook (BGK) [33] for

the collision operator is [2,3]
faðxþ eadt; t þ dtÞ ¼ faðx; tÞ �
1

s
fa � f ðeqÞ

a

� �
þ F a; ð4Þ
where fa is the density distribution function with discrete velocity ea along the ath direction, f ðeqÞ
a is the

equilibrium distribution function, and s is the relaxation time due to fluid particle collisions. The collision

time-scale determines the viscosity m of the modeled fluid. In what follows, we use the LBE model with 19

velocities in three dimensions, i.e., the D3Q19 model. The discrete velocities are:
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ea ¼
ð0; 0Þ a ¼ 0;

ð�1; 0; 0Þc; ð0;�1; 0Þc; ð0; 0;�1Þc a ¼ 1–6;

ð�1;�1; 0Þc; ð�1; 0;�1Þc; ð�1;�1; 0Þc a ¼ 7–18.

8><
>: ð5Þ
The equilibria for incompressible flow [34] are
f ðeqÞ
a ¼ wa dqþ q0

3ea � u
c2

þ 9ðea � uÞ2

2c4
� 3u2

2c2

" #( )
; ð6Þ
where dq is the density fluctuation, q0 is the constant mean density in the system which is usually set to 1,

and c = dx/dt = 1 in lattice units (i.e., dt = dx = 1). The sound speed of the model is cs ¼ c=
ffiffiffi
3

p
. The total

density is q = q0 + dq. The practice of using only dq instead of q in Eq. (6) reduces the effect due to
round-off error in the LBE simulations [35,36]. The weighting factors wa for the D3Q19 model are

w0 = 1/3, w1–6 = 1/18, and w7�18 = 1/36. The mass and momentum conservations are strictly enforced by:
dq ¼
X
a

fa ¼
X
a

f ðeqÞ
a ; q0u ¼

X
a

eafa ¼
X
a

eaf ðeqÞ
a . ð7Þ
For athermal fluids, the forcing term Fa is [37]
F a ¼ �3waq0

ea � a
c2

dt; ð8Þ
where a is the acceleration due to external force. In a rotating flow, a = �2X · u is the Coriolis force, where
X is the angular velocity of the frame of reference.

The Chapman–Enskog analysis of Eq. (4) leads to the following hydrodynamic equations
otqþ q0$ � u ¼ 0; ð9aÞ

otuþ u � $u ¼ �$p þ mr2uþ a; ð9bÞ

where p ¼ c2sq=q0, cs ¼ ð1=

ffiffiffi
3

p
Þc, and the kinematic viscosity m has the following relation with the relaxation

time
m ¼ 1

3
s� 1

2

� �
c2dt. ð10Þ
It is important to note that in LBE the strain rate tensor Sij can be obtained directly by computing the

momentum fluxes Qij, which are second-order moments of the nonequilibrium distribution function:
Sij ¼ � 1

2q0c2ss
Qij; Qij ¼

X
a

eaieaj½fa � f ðeqÞ
a �. ð11Þ
The dissipation rate e is computed as e ¼ 2m
P

i;jSijSij.

3.2. LES extension of lattice Boltzmann equation

The filtered form of the LBE for LES is modeled as [38,39]:
�f aðxþ eadt; t þ dtÞ ¼ �f aðx; tÞ �
1

s�
½�f a � �f

ðeqÞ
a � þ �F a; ð12Þ
where �f a and
�f
ðeqÞ
a represent the distribution function and the equilibrium distribution function of the re-

solved scales, respectively. The effect of the unresolved scale motion is modeled through an effective colli-

sion relaxation time scale st. Thus in Eq. (12) the total LES effective relaxation time should be s* = s0 + st,
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where s0 and st are the relaxation times corresponding to the molecular viscosity m0 and the turbulence or

eddy viscosity mt, respectively. Accordingly m* is given by [38,39]
m� ¼ m0 þ mt ¼
1

3
s� �

1

2

� �
c2dt ¼

1

3
s0 þ st �

1

2

� �
c2dt; mt :¼

1

3
stc2dt; ð13Þ
where mt depends on the sub-grid model used in the simulation.

We use the Smagorinsky model [24,46] for subgrid closure. In the Smagorinsky model, the eddy viscosity

mt is calculated from the filtered strain rate tensor Sij ¼ ðoj�ui þ oi�ujÞ=2 and a filter length scale Dx as:
mt ¼ ðCSDxÞ2S; ð14aÞ

S ¼ Q
2q0c2ss�

; Q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
X
i;j

QijQij

s
; ð14bÞ
where S and Q are the characteristic filtered rate of strain and the filtered mean momentum flux,

respectively, and CS is the Smagorinsky constant. Since s* = s0 + st, s0 = 3m0 + 1/2 and st = 3mt in lattice

units, Eq. (14) leads to a quadratic equation for mt [39]. With CS and Dx given, st is obtained from Eq.

(14) as
st ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s20 þ 2

ffiffiffi
2

p
ðCSDxÞ2ðq0c4sdtÞ

�1Q
q

� s0

� �
. ð15Þ
In the LBE-LES with a uniform mesh, Dx = dx. In Eq. (15), the filtered momentum flux Q which is used to

determine mt is current in time. Because the time step in the LBE simulations is relatively small in physical

units, we can also use the value of Q of the previous time step to compute mt according to Eqs. (14), instead
of Eq. (15). Furthermore, it is also possible to use finite-difference (FD) approximation for Q. We will inves-

tigate all these options.

It is important to point out the salient difference between the implications of Smagorinsky closure in

LBE-LES and NS-LES. In NS-LES, the subgrid stress is assumed to be in equilibrium with the instanta-

neous local strain. Whereas in LBE-LES, the subgrid stress is not instantly in equilibrium with filtered

strain. The LBE-LES stress relaxes to the value dictated by filtered-strain at a relaxation rate determined

by the current eddy-viscosity. Thus, the LBE-LES formulation may lead to more spatio-temporal memory

effects. In the NS-LES, the effect of the eddy viscosity is instantaneous and the nonhydrodynamic variables
are completely ignored. Some preliminary studies using the LBE-LES have yielded encouraging results [40–

45]. In this work we will compare the LBE-LES and NS-LES in the fundamental problem of HIT.

In all the results presented in this paper, we use the single-relaxation-time LBE obtained from BGK

model for the collision operator. Preliminary computations of LBE-DNS using a multiple-relaxation-time

(MRT) model [36] show no distinguishable difference in these unforced turbulence simulations.
4. Simulation results

4.1. Initial conditions

We conduct the simulations in a 3D periodic cube with various resolutions N3. The initial incompressible

homogeneous isotropic velocity field u0 ($ Æ u0 = 0) is generated in spectral space j with the following en-

ergy spectrum in a prescribed range jmin 6 j 6 jmax and a random phase (cf. details in [47]):
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Êðj; 0Þ ¼
0.038jm expð�0.14j2Þ j 2 ½jmin; jmax�;
0 j 62 ½jmin; jmax�.

�
ð16Þ
Then the velocity field is transferred to physical space. In what follows, we use m = 4 or 2 in Eq. (16) to

investigate the effect of m on the energy spectrum and other quantities.

The initial density fluctuation dq (or the pressure p) consistent with the specified velocity field can be
obtained by an iteration procedure [48]. It is important to stress that the preparation of the initial data

is crucial in the LBE-DNS of HIT [49]. The pressure obtained by solving the Poisson equation from the

initial velocity u0 is inconsistent and insufficient to initialize the LBE simulation. It is inconsistent because

LBE is intrinsically compressible and, therefore, the Poisson equation is not satisfied exactly. It is insuffi-

cient because LBE initial data consists of more than the hydrodynamic variables and the nonhydrodynamic

variables cannot be specified by solving hydrodynamic equations. A consistent procedure for constructing

the initial data for the LBE simulation that minimizes the error due to initialization is given in [48].

4.2. LBE-DNS of decaying isotropic turbulence

We first present the results from LBE-DNS of decaying HIT in the inertial frame at two resolutions: 643

and 1283. All initial spectra are given by Eq. (16) with m = 4 unless indicated otherwise.

Fig. 1 shows the evolutions of the normalized kinetic energy k/k0 and the normalized dissipation rate e/e0
with respect to normalized time t 0 = t e0/k0. The parameters for both cases are urms = 0.023 and m = 1/600

(s = 0.505). In the case of 643, the initial energy spectrum is non-zero in the range 4 6 j 6 8, resulting in

Rek � 53. For the case of 1283, the initial energy spectrum is non-zero in the range 1 6 j 6 8, resulting
in Rek � 119. In the absence of production, the kinetic energy k decays monotonically in time, whereas

at early stages the dissipation rate e increases. This increase in e/e0 is consistent with known turbulence

physics (explained further below) and the same phenomenon is also seen in NS-DNS results. Following this

period of increasing dissipation, both the kinetic energy and dissipation decay monotonically. The decay

exponent n of the kinetic energy in these low Rek simulations varies in time. Furthermore, Rek itself is a
t'

k/
k 0

, e
/e

0

10–3 10–2 10–1 100 10110–2

10–1

100

e/e0 (1283)

e/e0 (643)

Time evolution of the normalized kinetic energy k/k0 (solid lines) and normalized dissipation rate e/e0 (dashed lines) at two

tions using LBE-DNS simulations. 643 (thin lines) and 1283 (thick lines).
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function of time as the turbulence decays. The variation of n vs. Rek in various simulations are shown in

Fig. 2. The dependence of n on Rek obtained by the LBE-DNS is very similar to that observed in NS-

DNS calculations [17] and experimental data.

Fig. 3(a) shows the compensated energy spectra Êðj; t0Þ=j4 for a 1283 simulation at early times during

which cascade is the dominant process. Initially, the spectrum (solid line; m = 4) is narrow and soon the
energy spreads to higher wave numbers (smaller scales) due to the nonlinear cascade process. This phenom-

ena leads to the increase of the dissipation rate in physical space, as shown in Fig. 1. This fact, in itself, is

significant since advection (the source of nonlinearity) is handled very differently in LBE. At this stage, the

spectrum scales as Êðj; t0Þ � j4 at small j. Fig. 3(b) shows another 1283 simulation which has the same rms

of the initial velocity field and m as the case of Fig. 3(a), but the energy is concentrated in the range of
+++++++

0 5 10 15 20 25
1.5

1.6

1.7

1.8

1.9

Re λ

C
2

Fig. 2. Dependence of the decay exponent n = 1/(C2�1) on initial conditions and Rek. The quantity C2 is depicted in the figure instead

of n. Solid lines represent NS-DNS data from [17] and symbols correspond to the LBE-DNS results of the present work. For the 1283

resolution, s: urms = 0.0064, kmin = 1, kmax = 8, and m = 0.01; e: urms = 0.021, kmin = 8, kmax = 16, and m = 1/600; h: urms = 0.022,

kmin = 1, kmax = 8, and m = 1/600. For the 643 resolution (+): urms = 0.022, kmin = 4 and kmax = 8, and m = 1/600.
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Fig. 3. Compensated energy spectra for two cases of 1283 at early times. The initial spectra (solid lines) are given by Eq. (16) with

m = 4. The dashed lines are the compensated energy spectra at, (a): t 0 = 0.022, 0.044, 0.066, and 0.088, and [kmin,kmax] = [1,8], and (b)

t 0 = 0.0022, 0.022, and 0.066, and [kmin,kmax] = [8, 16]. In both cases the spectra scale as Êðj; t0Þ � j4 at small j.
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8 6 j 6 16, resulting in Rek � 67. We observe that the range [jmin,jmax] of the initial energy spectrum

Êðj; 0Þ does not affect the scaling behavior of the spectrum at later times.

Next, we show results from a set of simulations in which the initial spectrum is also given by Eq. (16) but

with m = 2. Fig. 4 depicts the evolution of the compensated spectrum Êðj; t0Þ=j2 at early times. It is seen

that the spectrum now scales as j2. In summary, as shown in Fig. 5, the low wave-number spectra scale
as ÊðjÞ � j4 if m = 4 (Fig. 5(a)) and ÊðjÞ � j2 if m = 2 (Fig. 5(b)). This dependence of low-wave number

scaling on initial spectrum is in agreement with the existing results (e.g. [17,18]) and theoretical predictions

[50]. It can be shown by using dimensional analysis that [50], if initial spectrum is limj!0Êðj; 0Þ � jm with

mP 4, then backscatter will fill in a j4 spectrum at large scales (small j). However, if m 6 4, the low wave-

number spectrum will scale as jm.
100 101 102
10–3

10–1

101

103

105

107

109

k

Ê
(k

,t'
)/

k2

t ' = 0
0.011
0.017
0.027

Fig. 4. Compensated energy spectra for a 1283 simulation (urms = 0.023, m = 1/600, and Rek � 141) at early times, t 0 = 0.011, 0.017,

0.027. The initial spectra is given by Eq. (16) with m = 2. The spectra scale as Êðj; t0Þ � j2 at small j.
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,t'
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2
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1010 (b)

k

∝ k∝ k 4

Fig. 5. Dependence of low-j scaling on initial spectrum. The resolution is 1283. The dash lines are initial spectra (t 0 = 0) and the solid

lines are Êðj; t0Þ at t 0 = 0.022. (a): m = 2 (corresponding to Fig. 4) and (b): m = 4 (corresponding to Fig. 3(a)) in Eq. (16) for the initial

spectrum.
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The LBE-DNS of decaying HIT in a rotating frame is also performed. Without loss of generality, we

assume that the frame of reference rotates about the z-axis with the angular velocityX = (0,0,x). The Ross-

by number is defined as Ro = jpurms/x, where jp characterizes the energy containing wave number at t = 0.

Here, we use jp = (jmax�jmin)/2.

The effects of rotation are scale dependent and they are enhanced by increasing the rotation rate x
(decreasing Ro). In general, it has been well understood that rotation slows down the cascade and delays

the approach to equipartition [51,52]. These features are captured in Figs. 6 and 7. Fig. 6 shows the evo-

lution of kinetic energy at various Rossby numbers in a simulation with 1283 resolution. The initial energy

spectrum is non-zero in the range of 1 6 j 6 8. As expected, the energy decay slows down with decreasing

Rossby number (or increasing rate of rotation). Closer examination of the spectra (Fig. 7) shows the
0 1 2
0.2

0.4

0.6

0.8

1.0

t '

k(
t')

 / 
k 0
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2. 0
2. 2
3. 0
5. 0
∞

Fig. 6. Kinetic energy decay in 1283 LBE-DNS with different Rossby (Ro) numbers.
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Fig. 7. Energy spectra at t 0 = 10.5 with 643 resolution and different Ro. urms = 0.023, [kmin,kmax] = [1,4], and m = 0.01. The dashed line is

the inertial case (X = 0 or Ro = 1).
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tendency to maintain more energy at the small wave numbers (large scales) when the system rotates. The

faster the system rotates (smaller Rossby number), the more prominent is this tendency.

4.3. LBE-LES of decaying isotropic turbulence

We now turn our attention to LES with LBE. Here, we perform LES of decaying HIT without rotation.

To enable close comparison with DNS, we perform LES with the initial large-scales identical to those of

1283 LBE-DNS case (corresponding to the results of Fig. 1). The initial flow field of the LBE-DNS is appro-

priately truncated in spectral space to yield the initial LBE-LES fields for 323 and 643 resolutions. Thus, the

initial LBE-LES field is obtained by filtering out all wave numbers above 16 for 323 and 32 for 643.

4.3.1. Calibration of CS

Our first exercise is to determine the appropriate Smagorinsky constant for LBE-LES. Fig. 8 shows the
energy spectra at some specific time instant with different Smagorinsky constant values for both 323 and 643

cases. The instantaneous LES spectra are compared against DNS spectrum at the same time. As expected,

643 performs better than 323 although at small j (large scale) region both 323 and 643 spectra agree well

with the DNS spectrum. The comparison of the kinetic energy decay from the same runs is shown in

Fig. 9. From both figures, we find that CS = 0.1 yields better results than the typical value of CS = 0.17 used

in the NS-LES [24]. The physics underlying the need for reducing CS in LBE-LES needs further

investigation.

In Fig. 10, we compare the instantaneous flow structure of uz(i,j,k = N/2,t 0) obtained by the LBE-LES
with that calculated from LBE-DNS. As shown in Fig. 10, the LBE-LES appears to capture the flow-field

structure quite adequately even with a coarse resolution of 323. In all subsequent calculations, we use

CS = 0.1.

4.3.2. Other methods of computing S
In all the above calculations, we compute S from the second-order moment of nonequilibrium distribu-

tion functions at the current time-step and then determine mt according to Eq. (15). We now investigate the

other options for determining S which may provide some computational advantages.
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First, we compare two different ways of computing the strain rate tensor: (1) from the second-order mo-
ments of nonequilibrium distributions (NEQD) as given in Eq. (11) and (2) by finite-difference (FD)

approximation of derivatives Sij ¼ ðoj�ui þ oi�ujÞ=2. In Fig. 11, we compare the kinetic energy evolution from

both computations with LBE-DNS result. In the 323 case (Fig. 11(a)), the computation using a simple
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second-order central difference approximation quickly diverges while computation using the second-order

moments of nonequilibrium distribution captures the DNS result. We also note that a more sophisticated
19-point FD approximation [53] for Sij does not improve the result. In the 643 case (Fig. 11(b)), both

computations yield good results as the resolution is adequate for finite-difference evaluation of S. The con-
clusion is that the calculation of S based on the second-order moments of the nonequilibrium distribution

functions is more accurate and the corresponding LBE-LES simulations are more stable. This is more

noticeable for forced turbulence flows than for decaying flows.

We next test two different methods of computing strain rate S from the second moment of nonequilib-

rium distribution functions. In the implicit method, mt is computed according to Eq. (15) with S of the cur-

rent time step. Whereas in the explicit approach, mt is computed according to Eq. (14) with S from previous
time step. Fig. 12 depicts the contours of the instantaneous flow structure of uz(i,j,k = N/2,t 0) obtained from

LBE-LES (323) using the two formulae to compute mt. The velocity fields obtained with the two formulae

are almost identical, as shown in Fig. 12; the L2-norm difference between the two velocity fields is less than

0.02%. Therefore, we verify that the eddy viscosity can be computed from either Eq. (15) or Eqs. (14) with-

out significant effect on the flow fields.
4.4. LBE-LES vs. NS-LES

We further compare the LBE-LES with the NS-LES results at 323 resolution in Figs. 13–15. The NS

solver used here is the finite-volume commercial code SWIFT [54,55], which is second-order accurate in

space. A second-order NS scheme is chosen for comparison since the LBE method is formally of second

order. The initial velocity fields for LBE-LES and NS-LES simulations are nearly identical. From Figs.

13 and 14, it is seen that both the normalized kinetic energy evolution k(t 0)/k0 and the instantaneous energy

spectrum Êðj; t0Þ computed from LBE-LES are slightly closer to the DNS results than those computed from

NS-LES.

The difference between the LBE-LES and NS-LES is much more prominent in the instantaneous flow
field uz(i,j,k = N/2, t 0) as shown in Fig. 15. By comparing the LBE-LES results (left column) and the

NS-LES results (right column) with the LBE-DNS results (center column), we conclude that LBE-LES pre-

serves the flow structure marginally better than the corresponding NS-LES. The 323 LBE-DNS contours

shown here are obtained by truncating the 1283 LBE-DNS data.
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Fig. 12. The instantaneous flow fielduz(i,j,k=N/2,t0) obtained from LBE-LES (323) with two dtimes. Top row:mtis computed according to Eq.(15). Bottom row:mtis computed according toEq. (14)with one-time step lag inS.
To quantify the difference between the LBE-LES and NS-LES, we compute the root mean squared

velocity difference normalized by the total kinetic energy:
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where uDNS is the 323 velocity field obtained from truncating the 1283 DNS field. The errors in LBE-LES
and NS-LES are shown in Fig. 16. Clearly, the LBE-LES velocity field is consistently closer to the DNS

velocity field than the NS-LES counterpart. The initial incompressible velocity field u0 is generated spec-

trally. While the LBE-LES has no difficulty with this initial velocity field, the second-order finite-difference

NS solver is incompatible with it. In the NS solver, the spectrally generated initial velocity field u0 has to be

so modified that $ Æ u0 = 0 is only satisfied up to second order in space. This initial difference in the velocity

field persists in time, as shown in Fig. 16.

In this paper, we restrict ourselves to constant coefficient Smagorinsky subgrid closure. More recent ver-

sions of Smagorinsky model (dynamic, Lagrangian, etc.), can also be implemented on the LBE platform.
There is every reason to believe that these advanced subgrid closures lead to as much improvement on the

LBE platform as in the Navier–Stokes case.

The choice of the constant coefficient Smagorinsky subgrid closure for testing LBE-LES in HIT can be

further justified as follows. It is well known that the deterministic value of the Smagorinsky ‘‘constant’’ CS

obtained by requiring Kolmogorov scaling of the subgrid scales and a flux balance between resolved and

unresolved scales [56] is not satisfactory when used in simulations of shear flows [57]. However, it seems

reasonable to expect that the dynamic procedure should return values statistically close to the deterministic

value in flows in which the assumptions of Kolmogorov scaling and flux balance actually hold [58]. Both
steady state forced turbulence and decaying turbulence are such flows. Indeed, simulations of homogeneous

isotropic turbulence using constant CS very close to the deterministic value are found to be satisfactory in

practice [57].
5. Summary and conclusions

In this paper, we perform DNS and LES of the classical decaying HIT problem with and without ref-
erence frame rotation using the LBE method. Three categories of simulations have been performed.

First, we perform the LBE-DNS. Well known power-law decay of the kinetic energy is reproduced. The

decay exponents obtained in the LBE simulations are in agreement with the results from experimental

measurements and NS-DNS calculations. The low-wavenumber energy spectrum scaling depends on initial
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conditions. Both j4 and j2 scaling are obtained from appropriate initial conditions consistent with [17,18].

The effect of rotation on turbulence, which is to suppress the spectral cascade, is also well captured.

Second, we conduct a comparative study of the LBE-LES and the LBE-DNS. Comparisons of 643 and

323 LBE-LES against 1283 LBE-DNS show that the large scale motion is well captured by LBE-LES. We

observe that a smaller Smagorinsky constant, CS = 0.1, yields better results in LBE-LES. By choosing
appropriate Smagorinsky constant CS, even a coarse resolution of 323 adequately captures large scale

motions.

Finally, we compare both LBE-LES and NS-LES with the corresponding DNS results and observe that

LBE-LES appears to preserve instantaneous flow structure more accurately. We observe that the implica-

tions of a given subgrid closure (e.g., Smagorinsky model) can be different on the LBE platform than on an

NS platform. Two major differences are now discussed. First, in LBM, the availability of nonhydrodynamic

variables can potentially lead to a more accurate closure. The LBE-LES subgrid stress following a resolved

streamline relaxes to the intended NS-value rather than assume the NS-value immediately. This relaxation
process will clearly bring memory and non-local effects into the LBE closure that is absent in the NS plat-

form. Second, in SGS modeling such as Smagorinsky closure, an accurate estimate of the resolved strain

rate is required. The strain rate of the resolved field can be accurately calculated directly from the distribu-

tion function in LBM. In non-spectral NS methods, the strain rate has to be obtained using a finite differ-

ence procedure. The former calculation is more accurate than the latter giving LBM a potential advantage

over a comparable second-order NS scheme. In fact, our results (e.g., Fig. 11(a)) show that this can make a

significant difference in the calculation.

In conclusion, we would like to point out that a complete theory of the rigorous formulation of LBE-
LES is still lacking. Even though our work does further validate the LBM as a viable computational tool

for turbulence simulations, more extensive validation and verification studies of LBE-LES are required in

the future.
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